

Dual space and five lemma

1 For a given real vector space V there is an associated real vector space $Hom_{\mathbb{R}}(V,\mathbb{R})$ of \mathbb{R} -linear functionals, known as dual space of V and denoted by V^* .

Theorem 1 (Five lemma) A lemma, which states that for a given commutative diagram of additive abelian groups with exact rows, if f_0 , f_1 , f_3 and f_4 are isomorphisms then f_2 is an isomorphism.

Oriented smooth manifold, good cover and de Rham cohomology

• The collection of C^{∞} -differential forms on \mathbb{R}^n together with de Rham operator $d: \Omega^p(\mathbb{R}^n) \to \Omega^{p+1}(\mathbb{R}^n) (1 \le p \le n-1)$ is called **de Rham complex**. The quotient ker(d)/img(d) is the *p*-th de Rham cohomology group, $H^p(\mathbb{R}^n)$, similarly we have, de Rham complex with compact support and the cohomology group $H^p_c(\mathbb{R}^n).$

- **2** A connected, Hausdorff, second countable and locally euclidean topological space with smooth atlas is called smooth manifold. If Jacobian of transition maps remain of same sign, smooth manifold is called **oriented smooth** manifold otherwise non-oreinted smooth manifold.
- **3** An open cover $\{U_{\alpha}\}_{\alpha \in I}$ of a manifold M is called good cover if each non-empty finite intersection $U_{\alpha_0} \cap \ldots \cup U_{\alpha_n}$ are diffeomorphic to \mathbb{R}^n . For a finite index set, good cover is said to be of finite type.
- Poincaré has computed $H^p(\mathbb{R}^n)$, $H^p_c(\mathbb{R}^n)$ entitled as Poincaré Lemma.

5 The **Mayer-Vietoris sequence**

- $0 \to \Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0$ is exact and useful to compute $H^*(M)$, where $M = U \cup V$.
- 6 Similarly, we have Mayer-Vietoris sequence $0 \to \Omega^*_c(U \cap V) \to \Omega^*_c(U) \oplus \Omega^*_c(V) \to \Omega^*_c(M) \to 0$ for compact supports, which is useful to compute $H^*_c(M)$.
- **7** Using Mayer-Vietoris sequence, induction principle and Poincaré lemma, if a manifold has finite good cover then its cohomology as wells as cohomology with compact support are finite dimensional.

Orientability and The Poincaré Duality theorem

Ayush Jaiswal

Indian Institute of Technology, Gandhinagar

Abstract

In this poster session, I will explain duality relationship between de Rham cohomology and de Rham cohomology with compact support of a smooth manifold, entitled as *Poincaré duality*. I will explain definitions of de Rham complex and twisted de Rham complex, Mayer-Vietoris sequence, applications.

Figure: smooth manifold

Poincaré duality(orientable)

 \bullet Let V and W be finite-dimensional vector spaces. The pairing $\langle,\rangle: V \otimes W \to \mathbb{R}$ is nondegenerate iff the map $v \mapsto \langle v, \rangle$ defines an isomorphism $V \xrightarrow{\sim} W^*$ for some fixed $v \in V$ and the map $w \mapsto \langle, w \rangle$ defines an isomorphism $W \xrightarrow{\sim} V^*$ for some fixed $w \in W$.

2 For oriented smooth manifold the wedge product and integration(using Stokes' theorem) of smooth forms descends to cohomology.

Theorem 2 For an oriented smooth manifold M with finite good cover, there is a non-degenerate pairing, $H^q(M)\otimes$ $H^{n-q}_{c}(M) \to \mathbb{R}$ given by $(\tau, \mu \mapsto \int \tau \wedge \mu)$ equivalently, $H^q(M) \simeq (H^{n-q}_c(M))^*$

Proof The proof can be described as follows. ;

• Let $M = \bigcup_{i=1}^{l} U_i$ be finite good cover.

2 Induced long exact cohomology sequences from 5 and 6 can be paired(using non-degenerate pairing) to get square diagrams with both exact rows as follows.

$\ldots H^q((U_0 \cup \ldots U_{l-1}) \cap U_l) -$	$\longrightarrow H^{q+1}(U_0 \cupU_{l-1} \cup U_l)$ ——	$\rightarrow H^{q+1}(U_0 \cupU_{l-1}) \oplus H^{q+1}(U_l) \dots$
12	$\int f_2$	
$(H_c^{n-q}((U_0 \cupU_{l-1}) \cap U_l))^*$	$\rightarrow (H_c^{n-q-1}(U_0 \cupU_{l-1} \cup U_l))^* \rightarrow (I$	$H^{n-q-1}(U_0 \cupU_{l-1}))^* \oplus (H^{n-q-1}(U_l))^*$

3 Using five lemma and Poincaré lemma, Poincaré duality holds.

4 The finiteness condition on good cover is not necessary 5, Page no. 14 and 198].

Figure: Mobius Strip

Twisted de Rham complex, cohomology and orientation bundle

1 For a given vector bundle E on M, we can define the space of E-valued smooth q-forms to be global sections of vector bundle $\wedge^q T^*M \otimes E$. There is an \mathbb{R} -algebra $\Omega^*(M, E)$. **2** For a flat vector bundle E with trivialization $\phi = \{U_{\alpha}, e_{\alpha}\}_{\alpha \in I}$, we can define a differential operator $d_E: \Omega^p(M, E) \to \Omega^{p+1}(M, E)$, locally given by $d_E(\sum_i \omega_i \otimes e_{\alpha_i}) = \sum_i d(\omega_i) \otimes e_{\alpha_i}$ and we have differential complex $\Omega^*_{\phi}(M, E)$ along with cohomology $H^*_{\phi}(M, E)$

depending on trivialization.

Proposition 1 For given two trivialization ϕ and ψ with associated cocycle maps $\{g_{\alpha\beta}\}$ and $\{h_{\alpha\beta}\}$ and same open cover $\{U_{\alpha}\}_{\alpha \in I}$. If there exists locally constant functions $\lambda : U_{\alpha} \to GL_n(\mathbb{R})$ such that $g_{\alpha\beta} = \lambda_{\alpha}h_{\alpha\beta}\lambda_{\beta}^{-1}$, there are isomorphisms $H^*_{\phi}(M, E) \simeq H^*_{\psi}(M, E)$.

1 For a manifold M, atlas $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in I}$, transition map $g_{\alpha\beta} = \phi_{\alpha} \circ \phi_{\beta}^{-1}$, orientation line bundle L is a line bundle with co-cycle map,

$$\begin{bmatrix} 1, & \text{if } J(g_{\alpha\beta} > 0) \\ 0 & \text{if } J(g_{\alpha\beta} > 0) \end{bmatrix}$$
[3]

$$\overset{\mathcal{L}}{\alpha\beta} = \begin{cases} 0, & \text{if } J(g_{\alpha\beta} = 0) \\ -1, & \text{if } J(g_{\alpha\beta} < 0) \end{cases}$$

n 2 For two trivializations
$$\phi'$$
 and ψ' of L in-

Proposition 2 For two trivializations ϕ' and ψ' of L induced from two atlases ϕ and ψ on smooth manifold M, then the twisted complexes $\Omega^*_{\phi'}(M,L)$, $\Omega^*_{\psi'}(M,L)$ are isomorphic also cohomologies $H^*_{\phi'}(M,L), H^*_{\psi'}(M,L)$ are.

• Define the **twisted de Rham complex** $\Omega^*(M, L)$ and twisted de Rham cohomology $H^*(M, L)$ to be $\Omega^*_{\phi'}(M,L)$ and $H^*_{\phi'}(M,L)$ for any trivialization ϕ' of L induced from M. Similarly, we can have **twisted de** Rham cohomology with compact support, $H_{c}^{*}(M, L).$ 2 If a trivialization ψ on L is not induced from M then $H^*_{\psi}(M,L)$ may not be equal to $H^*(M,L)$.

3 A density on M(dimension n) is an element of $\Omega^n(M, L)$, equivalently a section of the bundle $(\wedge^n T^*M \otimes L)$.

2 Using universal coefficient theorem and Poincaré duality we can deduce, a closed manifold of odd dimension has Euler characteristic 0[2, Corollary 3.37].

[1]	-
[2]	-
[3]	-
LJ	I

 $\left[4\right]$

[5]

Poincaré duality(non-orientable)

4 The transition function for the bundle $\wedge^n T^*M \otimes L$ is

 $\frac{1}{|J(q_{\alpha\beta})|}$; and global integration of density is defined.

5 Similar to the case of orientable manifold, wedge product and integration descends to cohomology group.

Theorem 3 On a manifold M of dimension n with a finite good cover, there are nondegenerate pairings $H^q(M) \otimes_{\mathbb{R}}$ $H^{n-q}_c(M,L) \to \mathbb{R} \text{ and } H^q_c(M) \otimes_{\mathbb{R}} H^{n-q}(M,L) \to \mathbb{R} \text{ equiva-}$ lently, $H^q(M) \simeq (H^{n-q}_c(M,L))^*$.

Applications

• Let M be a connected manifold of dimension n having a finite good cover. Then, [1, Corollary 7.8.1]

 $H^{n}(M) = \begin{cases} \mathbb{R}, \text{ if } M \text{ is compact orientable} \\ 0, & \text{otherwise} \end{cases}$

References

Raoul Bott, Loring W Tu, et al.; *Differential forms* in algebraic topology, volume 82. Springer, 1982

Hatcher, A. (2002); Algebraic topology, United Kingdom: Cambridge University Press.

In wikipedia.

https://en.wikipedia.org/wiki/Orientability

https://freesvg.org/lummie-mobius-strip

Halperin S., Greub W. and Vanstone R.; Connections, Curvature and Cohomology, vol. 1, Academic Press, New York and London, 1972.